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Overview

I have pursued my research work in the area of data assimilation before which I finished my M.Sc and B.Sc Honors
in physics. During my coursework, I worked on interesting projects starting with analytical solution of Stokes’s flow
in spherical geometry using vector spherical harmonics, numerical solution to stochastic forced burgers equation,
1-d visco-eslastic pde model, kuramoto-sivashinsky equation and ensemble kalman filter(EnKF) for chaotic systems.
I am generally fond of computational problems in prediction and inference in context of complex systems where well
defined mathematical notions and ideas of probability, statistics and physics provide insight and can be converted
to code and increase my understanding through simulations. Other endeavours orthogonal to my own research work
is participation in hackathons where I stumble across new and emerging algorithms in deeplearning applications.
Apart from a few courses in machine learning and deeplearning, I gained coding experience in deep learning with
real datasets was gained during hackathons in writing an LSTM model for prediction of spatial time series data
of weather variable and deep generative models for learning distribution of sea surface temperature from historical
data using a generative adversarial network(GAN).

My thesis research work concentrates around data assimilation for chaotic dynamical system using EnKF[1],
a general sequential state estimation algorithm which computes the best estimate of the state with associated
uncertainty. Jointly with others, I have worked on demonstrating numerical filter stability, a crucial property of
a filter using Sinkhorn distance, a distances between probability distribution. In another work, I am looking at
covariant lyapunov vectors which are important in improving the existing techniques in prediction and estimation
of a dynamical system in general. I now briefly talk about them below, starting with filter stability.

Numerical filter stability

In high-dimensional chaotic system such as atmosphere and ocean, it is not possible to track and predict such
a system for long using only the model [2]. Data assimilation uses numerical models of the physical system
representing our knowledge of the governing dynamics and combines them with the noisy and sparse observations
from the system weighted by their respective uncertainties, in order to produces improved statistical estimates of
the true state of the system[3]. In the setting of a deterministic dynamical system, with observations operators h
and measurement noise ϵ, we have

xk = M(xk−1), yk = h(xk) + ϵk, ϵk ∼ N (0,Σ), where xk ∈ Rd,yk ∈ Rpand p < d. (1)

Bayesian filtering is defined as the sequential estimation of the conditional distribution in phase space of the state
of a physical system coming from an assumed model taking into account the likelihood of new information arriving
from the observations using bayes theorem [4].

Stability of a filtering algorithm. The true state is unknown and the choice of ρ(x0) may be far from the
truth, hence all filtering algorithms making their arbitrary choice in order to run the assimilation system. It becomes
crucial that the conditional distribution of the state become independent of the initial choice used in initializing the
filter so that quantities estimates using the posterior are eventually independent of our arbitrary and often wrong
choice of ρ(x0). Filter stability is the property that the conditional posterior distribution computed sequentially
over long time is independent of the choice of the distribution at k = 0 used to initialize the filtering algorithm.
The question we ask is how to numerically check if a filter is stable for different dynamical systems? What we need
is a distance D on the space of probability distributions P (Rd) which, for two different initial distributions ν1, ν2
for any initial conditionx0 with π̂n(ν1) and π̂n(ν2) being the posterior obtained after assimilating all observation
y1:n at time n, converges with increasing n. Mathematically, for filter stability to hold, we have

lim
n→∞

E[D(π̂n(ν1), π̂n(ν2))] = 0 (2)

where, D is a distance on P (Rd), the space of probability measures on Rd and the expectation is over observation
noise accounting for different noise realizations [5]. In our work, we have chosen Sinkhorn distance[6], a type
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of distance on the space of probability distributions, which has several merits over other distances such as total
variation, apart from being computationally cheaper. This distance utilizes two samples from their respective
distributions in order to compute the distance between them upto the sampling errors. To finally demonstrate
and computationally show filter stability for enkf, I used Lorenz-96 in 40-dimensions as my model to assimilate
partial observations consisting of 20 components. With two different initial distribution for the filter, I studied
the exponential rate of convergence for the distance over time by numerically computing the Sinkhorn distance
[7] between the conditional distribution over time . Using different observation gap and observation covariance, I
showed that stability for enkf is quite robust to the above two parameters. I also studied numerically the relationship
between the rmse, a measure of filter accuracy with the filter stability.

Future research directions Below are some of problems where application of the above ideas of filter stability
may be practically useful.

1. A particularly interesting idea is to see how probabilistic machine learning models proposedly performing
filtering, satisfy this criteria improving them.

2. The study can be generalized to different filters in context of model and parameterization errors of unmodelled
quantities respectively.

3. Relating filter stability to the chaotic properties of the underlying system, since the interplay between the
instability and the informative observations lead to eventually capture the conditional distribution.

Reconstruction of Covariant Lyapunov vectors

Unstable vectors [2] and corresponding subspace of a system has been shown to improve forecasts in ocean-
atmosphere coupled models when the assimilation takes into account [8]. In the setting of data assimilation
with sparse and noisy observations, the best estimate of the true state over time comes with a caveat that the filter
estimates or the analysis mean over time is not a dynamical trajectory of the model equations. I formulated this
problem into using the filter estimate over time as a proxy of the true trajectory perturbed by the error statistics
to recover the laypunov vectors(LVs) and exponents. This approach led me to study numerical sensitivity of LVs
to perturbations in general for a given dynamical system.
Sensitivity of Lyapunov vectors The specific questions which I address about lyapunov vectors and the expo-
nents in context of the filtered trajectory are as follows:

• How sensitive are the backward and covariant lyapunov vectors(CLVs)[9] and the corresponding exponents
to perturbations in the underlying trajectory?

• Under what conditions can one recover them from a filter estimated trajectory instead of the true trajectory
of the dynamical system?

• How robust is the unstable subspace to the perturbation strength σ, and are they more robust than the
individual vectors themselves?

In order to start answering the above questions, I studied the effect on the LVs to small perturbations added to
the underlying trajectory by systematically adding noise of strength σ following a gaussian distribution N (0, σ2Id),
where d is the dimension of the state. I computed the the CLVs around the true and the perturbed trajectory using
Ginelli’s algorithm[10] which also gives BLVs as an intermediate step. I used the angles between the respective
LV obatined from the true and the perturbed trajectory to understand the limitations of such vectors obtained
from the numerical state estimates of the filter. In small dimension, I used Lorenz-63, where visualization and
interpretation is straight forward figure 1, where the angle between the first two clvs have been shown to predict
regime change in L63 system [11].

In high-dimensions, I studied Lorenz-96 in order to explore dimensional dependence added to the sensitivity
problem. Another interesting directions is using principle angles [12], which summarize the angle between two
different sub-spaces, and seeing how they change with σ, which I found to be more robust than the individual
vectors themselves. Such analysis is useful in context of problems where sub-spaces are more important than the
individual vectors themselves. I then used the above analysis to compute and interpret the information that can
be reconstructed using LVs from a filter generated trajectory using partial observed dynamical system.
Possible directions for research A set of directions for future work which can be directly extended from the
current work are as follows:

1. Combining the ideas of assimilation in unstable subspace where the sub-spaces computed from the historical
data can be employed.
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Figure 1: We plot the cosine between first two CLVs for both true trajectory and perturbed trajectory in phase
space. The left-most picture corresponds to the true trajectory. σ denotes the standard deviation of noise with
zero mean gaussian distribution used to add perturbations.

2. Using the degree of similarity in the lyapunov vectors between two nearby points on the attractor in phase
space for supervised machine learning methods to predict vectors at neaby points in the phase space.

3. Studying structure of CLVs for discretized pde systems such as kuramoto-sivashinksy equation which has a
finite dimensional attractor to shed light on CLV localization problem.

Future research interests

Problems at the interface of climate and data science is something I am interested to work, the topic on which my
interest from different workshops and discussions where I believe that the skills which I have acquired in the context
of data assimilation are useful. I am interested in understanding ways to incorporate uncertainty and dynamical
knowledge together to a general machine learning techniques for modelling and inference of large dynamical systems
of practical importance where the limited data combined with physical constraints and conservation laws can balance
for the sparsity and scarcity of available data. Such problems are of high interest in climate modeling and related
data science problems. Another important topic which I find fascinating to explore further is ideas from optimal
transport which I gained some exposure to while working on the filter stability problem and would like implement it
for different data-driven problems. Understanding how new developments such as diffusion models in latent space
for generative modelling can be used to design effective filtering and probabilistic machine learning algorithms are
another of my interests. I also look forward to computational problems in different fields where my current skills
can complement towards new directions of research.
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